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A description is given of an approximate method for computing the optimal 
(in regard to speed) trajectory [ 1 1 in a linear control system. The 

optimal problem is replaced by an auxiliary “smoothed out” problem rhlch 
is treated by the usual methods of the variational calculus. 

1. Let us consider a control system described by the differential 
equation 

dx 
-=.h+bu dt (1.1) 

where x is an n-dimensional vector of the phase coordinate system, A is 
an n x n matrix, b is an n-vector which characterizes the structure of 
the system, and u(t) is a scalar function that describes the control 
action. ‘Ihe admissible controls are subjected to the condition 

I u (t) I < 1 (I.21 

l’he optimal problem [ l-3 ] is formulated in the following way. 

Problem A. Ulder the given initial conditions x = x0, t = ta = 0 it 
is required to determine an admissible function Ip (t) (optimal control) 
such that the trajectory f(t) q x(x,,, t, $1 of the system (1) generat- 
ed by the control d’(t) will arrive at the point x = 0 in the shortest 
time TO.lhe existence of the solution of this problem is assured by 
the maximum principle [ 2 f , while the optimal trajectory x” (t) and the 
auxiliary vector functions +” (t) of the *momenta” ~j” (t 1 are the solu- 
tions of some Hamiltonian system under the initial conditions $_P(O> = 
ci* (i = 1, ..., n), which guarantee that the trajectory P (t) will pass 
through the point x = 0. lhe ‘difficulty in the concrete congutation of 
tp(t) and P(t) arises, in particular, out of the determination of the 
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constants C iD l In the present note there is described an approximate 
method for computing ti (t 1 and Zo (t ) . lhe problem is thus reduced to 
classical variational problem that is solved by the direct method. 
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Along with problem A, we shall also consider auxiliary problems. Let 
U,In, t 1 be a function which is continuously differentiable with respect 
t0 Xi, and satisfies the conditions 

(1.3) 

O<U,\<i for all t, 2; u, [O, t ] = 0; u, [z, t] = 0 If t >r, 

u,iX, t]>q(s) itf I!z\I>,e>o, o<tGg8, (1.4) 

(,[i Z 11 = (21~ -+- . . . + Zm2)1”) 

limq (e) = I, limg, = oo, limv, = oc lif E-+0 (2.5) 

Prob Zeta A<. For given x = x0, t0 = 0, it is required to determine an 6 
admissible control uC (t 1 such that 

T,” = [U, fz (z,, t, aSo), t] dt = min ft.61 

Problem Al:; z&g:;: i = rgr to = 0 it is required to determine a 
control uC ko 

T rk” = y(u. [z (xc,, t, u,k’), t] + [~“(t)]~~) dt - T” = min (1.7) 
B 

where K is a positive integer and the function nEko is restricted by the 
condition ( 1.2 1, 

In the sequel it will be assumed that the point x0 lies in the region 
G, in which there exists an admissible control at the point x = 0 for a 
finite time T(x,). In particular, if the condition 

n-i n-1 
z hl A’b#O when x &‘#O 
I=0 l=O 

is satisfied, then G, will be an open region containing 
If in this case the characteristic values of the matrix 

(I.81 

the point x = 0. 
A have negative 

real parts, then the region Co coincides 12-S 3 with the entire space 
IX). 

2. Ihe following result can serve as a basis for the replacement of 
problem A by the problems A, and AC k for small 6 > 0 and for large k. 

Theorem 2.1. The following equations hold: 
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lim T,” = T” as E-+0 (2.1) 

Em T&O = To as s-0, k-+w 
(2.2) 

where the function UsQ (t) and ~,~oCt) converge in the mean to u’(t), as 
c -+ 0, K -, 00, on the interval to, To 1 (in I,). 

Proof. This theorem can be proved on the basis of the results given 
in 13-6 3. We give. however, a detailed proof based on the arguments 
presented in [Z-T I. 

The following inequalities are obviously true 

Let us consider briefly the question of the existence of the optimal 
control e’(t). Since there exists an admissible control u(t) from x0 at 
the point x = 0 during time T(se), the next ecW&iOn is valid 

TM,) 
--X0== 

s 
F-l (T) b u (7) dt (2.4) 

0 

where F”(r) I 11 F. .‘l\/ln fs a matrix which is the inverse of the 
fundamental matrix ii the Bolntion of the system dx/dt = Ax. 

This means that there exists a linear functional I8 1 

Suppose that among the furctions hi(r )I 0 < 7 < T(+e) there are exact- 
ly I (a< a) linear independent ones, and let us assume. for the sake of 
definiteness, that these are the first a functions fii, while hi = ‘j;hl~ 
.a* + hj*h, (j 5 NS+ 1, .-*f aI* Under these assumptions we have, by 
(2.5)‘ xi0 = Xjlslo + . . . + Ajrzao tj IS 8 + 1, . . . , n) and if the control 
u” is to pass through the point x = 0 when t = To < T(re). it fs suffi- 
cient that the following conditions be satisfied: 



Approxirate computation of optimal control 393 

where the functional f” is determined by the function u”: 

One can construct the functional f” (or, what is the same thing. the 
function u” (r) [ 8 ] ) satisfying the conditions (2.7) if, and only if 
E? I 

(2.9) 

where, in our case* the function u”(r) (for the smallest To ) is UniweXs 

determined by the condition [ 3,7 1 

u0 (v) = sign [$J h:hi (T) ] (2.10) 
i=l 

Here. Xi0 is the solution of the problem (2.9). We have thus obtained, 
as a byproduct, the verification that u” (r 1 has the form (2.10) and that 
the point x = 0 can be reached only from the points Zjo = xjlxl,, + . . . + 
h * L 
a:e” 

(j = a f 1, 
menstruated frok’lbe 

n). ge note here that, since the functions hi(r) 
solutions F. .-l ff f of a stationary linear system 

of differential equations, the quantfty Alo hi(r) + . . . + Aso h,(r 1 reduces 
to zero only at isolated values of r. Let us now assume the opposite, 
that the condition (2.1) (or (2.2)) is not satisfied. On the basis of 
(1.6), (1.71, (1.3)-(1.5) and (2.3) we can conclude that there exists a 
sequence 

such that the trajectory x(x0, t. uI) (or x(x9, t, uI*) falls on the 
surfaces 11 x 11 =: (: l during the time Tl (or Tlf) while 

lim Ed =O, lim T, = T,< T” ( or lim T,*= To’< To) as 1-t~ 

One can select, from this sequence, a subsequence which converges 
weakly in L2(0. 7’9) to the function u,(t) (or to the function ua*ft). 
respectively). In the formula for the solution of the system fl.1) 

z (s) = F (t) zrO + i F (t) F-r (r) bu (q do 
0 

(2.11) 

for this subsequence, it is permissible to interchange the order of 
taking the limit and integrating. The control functions (which are 
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measurable) u,,(t) (or u,*(t)) will make the trajectories of the system 
(1.1) pass through the point I = 0 when t = To < To (or t = TO* < To ). 

This is, however, impossible because u” (t) is an optimal control. In 
accordance with the considerations given at the beginning of the proof 
of the theorem, the minimum is reached on the function u’(t) of the type 
(2.10) not only relative to the admissible class of piece-wise continuous 
functions but also relative to a broader class of measurable. bounded 
functions. The derived contradiction proves the validity of Equations 
(2.11 and (2.2). 

The correctness of the second conclusion of the theorem under condi- 
tions (2.1) and (2.2) can be established in the same way by starting with 
the weak compactness of the functions uE (t) (or of u6 k*(t) = [sign 
tick(t)1 sup (luck(t) I, 1)) when 04 t< To, and on the basis of the 
uniqueness of the optimal control u” (t) determined by (2.101. 

3. In this section we derive necessary conditions for the optimality 
of the control uCo (t 1 and the trajectory x6” (t > of problem A. 

Theorem 3.1. The optimal control I+ O(t) for problem A satisfies the 
condition 

uEo (t) (q (1) .b) = max (3.1) 

where the vector function 6’ (t) is a particular solution of the system 

(3.2) 

(A’ is the transposed matrix of A, q(t) is a vector function). 

Note 3.1. If, in particular, II[ II, 1 1 = 1 when 11 ~11 > z, t < 06, 
then the vector function 9” (t), which by (3.1) determines an optimal 
control u,O(t). will be a particular solution of the system 

This coincides with the conditions of the maximum principle [2 1 for 
problem A which are connected with conditions (3.1) and (3.2) by theorem 
2.1. 

Proof of Theorem 3.1. Problem AC is an ordinary variational problem. 
Since the solution of the system (1.1) is given by Equation (2.111. the 
variation 8Tz of the functional (1.61, which corresponds to the VaridiOn 

au, (t). has the form 

a3 n 

8T, = s [x au, pa0 (t), tl ’ 
kl 

C3Xi 
\ [ 

0 0 j=l. e=l. 
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If the variation 8ufrf is zero everywhere outside a neighborhood of 
the point r = r *, then 

sign 6T, = - f (z’) sign 6u (f’) = 

= sign au tT*) f [ gi% [ i Fij (t) Fje-' (T*) be ]] cl2 (3.4) 
5* j=i, e=i 

The matrix FM ’ (t) is the transposed fundamental matrix of the solu- 
tion of the system (3.3). BY differentiating the integral (3.4) with 
respect to the parameter I* we can, therefore, verify that the function 

f(t) can be considered as the scalar product of the vector b by some 
particular solution $/O(t) of the system (3.2). Because of the minimal 
nature of Tco , the variation 6TC cannot be negative, which, in view of 

(3.41, proves the theorem. 

Note 3.2. The use of (3.1) and (3.2) is difficult in practical compu- 
tations of trajectories, because no rule is given for the determination 
of the initial conditions of the solution $o(t). Nowever, the considera- 
tion of the smoothed-out problem AC reveals the possibility of treating 
the optimal problem A as an ordinary variational problem. Furthermore, 
from this point of view one can easily see the connection between the 
methods of solving the optimal problems with the classical variational 
methods of mechanics. Hereby. the function U,cx, t] plays formally the 
same role as the terms which corresponds to the potential energy in 
Hamilton’s function of mechanical problems. Incidentally, we mention the 
fact that by this analogy the general Liapunov function v”(x, t), defined 
in the work [ 5 I, corresponds to the action S of a mechanical system in 
the theory of the Hamilton-Jacobi equation. Rosonoer [9 I has considered 
the analogy between the variational principles of mechanics and the solu- 
tion of optimal problems from a somewhat different aspect to ours. 

4. In this section we describe the direct method of solution of the 
problem A,. 

We choose for our function U,[ x, t ] the function 

II, = 1 - enp (- x2/2&) if tc[o, le~, U, = 0 if l>s, 

where rf is a sufficiently large nuekber. In . . other words, we replace the 
integral (1.7) by an integral of the function UC = 1 - exp( -.?/2~ ) over 
the finite interval [ 0, rcl . ‘Ihe problem AC R can be solved by the direct 
method. 

r&(t) =QIsin(tl~,)~...+nlsin(Zt/~,) (4.1) 
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‘lhe substitution of u(t) into Formulas (2.11) and (1.7) reduces the 
problem to the form 

min F (a,, . . . ,a*) = min [ 1 (UC [a: (%J> t, u), t1 + uw (t)) dt] 
0 

if (- 00 < ai < 00, i = I,...,1 
(4.2) 

If the nunber E > 0 is sufficiently small, and the numbers k and 1 

are sufficiently large, then the control u’ (t ) = alo sin( t/rc 1 + . . . + 
alo <It/r, ), where aio is a solution of the problem (4.2), will differ 
(in the mean) by an arbitrarily small amount from the optimal control 

d’(t), and the trajectory x(x,,, t, u’) will be arbitrarily close to 
P(t) at every moment t of the transition process. Indeed, the minimum 

of the function F(al, . ..) a) is obviously not less than T’ k”. tit the 

same time, the function d’(t) (for large enough 1) can be approximated 

(in the mean) arbitrarily closely by the polynomial (4.1). Hence, for 

small E > 0 and large k and I the quantity min F(al, . . . , a,) will differ 

from Tc k” by an arbitrarily small amount. 

Thus, in accordance with l’beorem 2.1, with t + 0, I -, - , the solution 

(4.1) of the problem (4.2) has to converge in the mean to Q(t), which 

proves our assertion. 

‘Ihe minimum (4.2) can be found by the method of fastest descent. If 

the coefficients ai are considered as functions of the parameter 8, then, 

in order to find the minimizing values aio, one has to integrate 

knnnerically) the system of equations 

Fiq = Fig (t), F;; = F;; (T) (i = 1,. . .,) 14.3) 

with 8 > 0, and with the initial conditions aio = ai which lie on the 

sphere of attraction of the singular point ai = aio of the system (4.3). 

‘Ihe process of fastest descent along the trajectory (4.3) can be 

accomplished on an optimizer, 

the restriction on u(t), which 

a system of extremal contr;: [ 10 I . Hereby 

is produced by the term u , can be re- 

placed by another one, which is more convenient in modelling. 

Note 4.1. The described method for computing the optimal trajectory 

by the method of smoothing out the problem and the application of direct 

methods, can be applied also in the case of a nonlinear, nonstationary 

control system. 
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4.2. It should be mentioned that the described method of Solution 
makes it possible to determlne only the individual optimal control u”(t) 
for previously-given initial conditions. This method is not very effect- 
ive in applications to a problem of synthesis, i.e. to the problem of 
determining the optimal control u” in the form of a function u” (xl of 
phase coordinates L. 
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