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A description is given of an approximate method for computing the optimal
(in regard to speed) trajectory [1 ] in a linear control system. The
optimal problem is replaced by an auxiliary "smoothed out" problem which
is treated by the usual methods of the variational calculus.

1. Let us consider a control system described by the differential
equation
dx

L — Azt bu (1.1)

where x is an n-dimensional vector of the phase coordinate system, 4 is
an n x n matrix, b is an n-vector which characterizes the structure of

the system, and u(¢) is a scalar function that describes the control
action. The admissible controls are subjected to the condition

lu@)|<C1 (1.2)
The optimal problem [1-3 ] is formulated in the following way.

Problem A. Under the given initial conditions x = x,, t = t5 = 0 it
is required to determine an admissible function «°(t) (optimal control)
such that the trajectory #°(t) = x(x), t, °) of the system (1) generat-
ed by the control «° (¢) will arrive at the point x = 0 in the shortest
time T°. The existence of the solution of this problem is assured by
the maximum principle [2 ], while the optimal trajectory x°(t) and the
auxiliary vector functions ¥° (t) of the "momenta” ¥,°(t) are the solu-
tions of some Hamiltonian system under the initial conditions ¥;°(0) =
cio (i=1, ..., n), which guarantee that the trajectory 2 (t) will pass
through the point x = 0, The difficulty in the concrete computation of
w®(¢) and »° (¢) arises, in particular, out of the determination of the
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constants ¢ ;,. In the present note there is described an approximate

method for computing v’ (t) and x°(t). The problem is thus reduced to the
classical variational problem that is solved by the direct method.

Along with problem A, we shall also consider auxiliary problems. Let
Ulx, t] be a function which is continuously differentiable with respect
to x;, and satisfies the conditions

(1.3)
B/ | for all t, x; U[0,t]=0; Uz, t}=0 if t>
Uela, t] >q(e) i flzll>e>0, 0<i<t: (1.4)
(lzll=(x?®4+ ...+ 2,27
limg(e)=1, limb =00, limt,=oc 11f e~ 0 {(1.5)

Problem A,.For given x = xy, ty = 0, it is required to determine an ¢
admissible control u (t) such that

TS = S Uelz(z,, t, u’), t]dt = min (1.6)
0
Problem A, . For given x = x;, t, = 0 it is required to determine a
control u, k°it) such that

o0

T’ = S(Ue [z (Z,, £, Uer®), t] + [e®(t))) dt — T° = min (1.7
¢}

where k is a positive integer and the function u,,° is restricted by the
condition (1,2),

In the sequel it will be assumed that the point %o lies in the region
G, in which there exists an admissible control at the point x = 0 for a
finite time T(x,). In particular, if the condition

n—} n—1
S M AB=0  when B M20 (1.8)
=0 =6

is satisfied, then G, will be an open region containing the point x = 0,
If in this case the characteristic values of the matrix A have negative
real parts, then the region G, coincides [ 2-5] with the entire space

fx}.

2. The following result can serve as a basis for the replacement of
problem A by the problems A, and A, ) for small ¢ > 0 and for large k.

Theorem 2.1, The following equations hold:
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Lm7.°=7° as s—0 2.1
Hm 70 = T° as e—0, k- oo (2.2)

where the function u€°(t) and "eko(’) converge in the mean to &° (1), as
€> 0, k> o, on the interval [0, T°] (in Ly).

Proof. This theorem can be proved on the basis of the results given
- r. o o " . <
in [3-8 ]. We give, however, a detailed proof based on the arguments
presented in [2-7 ].

The following inequalities are obviously true
T€°< To, Tsk°< TG (23)
Let us consider briefly the question of the existence of the optimal

control u°(t). Since there exists an admissible control a(t) from x, at
the point x = 0 during time T(xo). the next equation is valid

T{xe)
— Ly= S FY(x)ybu(r)dr (2.4)
9
where F~ l(r) = || F..~Y|," is a matrix which is the inverse of the

fundamental matrix of the 'solution of the system dx/dt = Ax.
This means that there exists a linear functional [ 8]

T (%)

J = { k@u@)d (HELO: T(z) (2.5)

such that

flhil= —xg,  hi(7) = Z Fi; (2) b (i =1,...,n)

j=1

l=sup(u@) <1 if 0CeCT (7)) (2.6)

Suppose that among the furctions h;(r), 0 <7 <IT(xo) there are exact~
1y » (» & n) linear independent ones, and let us assume, for the sake of
definiteness, that these are the first = functions h;, while hj "Kjihl*
oo+ Aj‘h' {(j=m+ 1, ..., n). Under these assumptions we have, by
(2.5), g = Ayxg+ «oe A2 (= =+ 1, ..., n) and if the control
v is to pass through the point x = 0 when t = T° < T(z,), it is suffi-

cient that the following conditions be satisfied:

Pl =—zi% (E=1...m) <t 2.7
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where the functional f° is determined by the function u°:
To
ri={rEuwEd (2.8)
]
One can construct the functional f° (or, what is the same thing, the

function W (r) [ 8 1) satisfying the conditions (2.7) if, and only if
{71

min [TX t §‘_, Nk (3) |df],>,1 ( % Ndig = — 1) (2.9)
o =1 i=1

where, in our case, the function u®(r) (for the smallest T° ) is uniquely
determined by the condition [3,71]

™m
u® (z) = sign [ SNhi (3) | (2.10)

e=l
Here, Ai° is the solution of the problem (2.9). We have thus obtained,
as a byproduct, the verification that «°(r) has the form (2.10) and that
the point x = 0 can be reached only from the points g = A;l 10+ st
AI' 0 (J=m+ 1, ..., n). We note here that, since the functions h,(r)
are constructed from the solutions F (r) of a stationary linear system
of differential equations, the quantity Al°hl(r) + oee. + A;’h.(r) reduces
to zeroc only at isolated values of r. Let us now assume the opposite,
that the condition (2.1) (or (2.2)) is not satisfied. On the basis of
(1.6), (1.7), (1.3)-(1.5) and (2.3) we can conclude that there exists a
sequence

ul = usl (t)___..___' (‘Ql‘ u’l‘ = uEl ftl (t) = [Sign ue!k;(t)](sup U uszk; (t)!; 1}))

such that the trajectory x(so, t, uy) (or x(:o. t, ug *) falls on the
surfaces || x|| = €; during the time T, (or T;*) while

lime; =0, lmT;=T,<T° (or EmTy=T,<T?) 88 l-s

One can select, from this sequence, a subsequence which converges
weakly in L,(0, T,) to the function uy(t) (or to the function wy*(t),
respectively). In the formula for the solution of the system (1.1)

t

() =F O+ | FO)F (@)bu(r)ds (2.11)

for this subsequence, it is permissible to interchange the order of
taking the limit and integrating, The control functions (which are
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measurable) ug(t) (or uo‘(t)) will make the trajectories of the system
(1.1) pass through the point x = 0 when t = T, < T° (or ¢t = Ty* < T° ).
This is, however, impossible because u° (t) is an optimal control. In
accordance with the considerations given at the beginning of the proof

of the theorem, the minimum is reached on the function u° (¢t) of the type
(2.10) not only relative to the admissible class of piece-wise continuous
functions but also relative to a broader class of measurable, bounded
functions. The derived contradiction proves the validity of Equations
(2.1) and (2.2).

The correctness of the second conclusion of the theorem under condi-
tions (2.1) and (2.2) can be established in the same way by starting with
the weak compactness of the functions u, (t) (or of u k‘(t) [sign
u o ()] sup (Ju, ,(t)], 1)) when 0< ¢ < T° and on the basis of the
uniqueness of the optimal control u«° (t) determined by (2.10).

3. In this section we derive necessary conditions for the optimality
of the control u,°(t) and the trajectory z,°(t) of problem A.

Theorem 3.1. The optimal control z%°(t) for problem A satisfies the
condition

u’ (t) (¢°(t)-b) = max (3.1)
where the vector function ¥ (¢) is a particular solution of the system

U [x,° (t), ¢t )
B Hptn) (me= T EA) @

(A is the transposed matrix of 4, n(t) is a vector function).

Note 3.1. If, in particular, Ul x, 1] = 1 when |[x]| > ¢, ¢ <6,
then the vector function ¢° (t), which by (3.1) determines an optimal
control u(°(t). will be a particular solution of the system

Y4y (1 2> (3.3)

This coincides with the conditions of the maximum principle [2 ] for
problem A which are connected with conditions (3.1) and (3.2) by theorem
2.1.

Proof of Theorem 3.1. Problem A, is an ordinary variational problem.
Since the solution of the system (1.1) is given by Equation (2.11), the
variation 81; of the functional (1.6), which corresponds to the variation
8ut(t). has the form

n

= So [izl au, [1? ° (1), 2} S L=l %—__1 Fij (t) F Y (x) bedu () ]d‘CJdt

oz;
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If the variation Su(r) is zero everywhere outside a neighborhood of
the point r = r*, then

sign 8T = — [ (z") sign du (") =

= sign du (<) §: (éﬁ%—f [5=1,21;=1 Fij (1) Fio 2 (1") be ]]dt (3.4)

The matrix F~ 1(¢) is the transposed fundamental matrix of the solu-
tion of the system (3.3). By differentiating the integral (3.4) with
respect to the parameter r* we can, therefore, verify that the function
f(t) can be considered as the scalar product of the vector b by some
particular solution ¥/°(¢) of the system (3.2). Because of the minimal
nature of 1}°, the variation 81} cannot be negative, which, in view of
(3.4), proves the theorem.

Note 3.2. The use of (3.1) and (3.2) is difficult in practical compu~
tations of trajectories, because no rule is given for the determination
of the initial conditions of the solution ¢¥/°(t). However, the considera-
tion of the smoothed-out problem A€ reveals the possibility of treating
the optimal problem A as an ordinary variational problem, Furthermore,
from this point of view one can easily see the connection between the
methods of solving the optimal problems with the classical variational
methods of mechanics. Hereby, the function Uz{x, t] plays formally the
same role as the terms which corresponds to the potential energy in
Hamilton’s function of mechanical problems. Incidentally, we mention the
fact that by this analogy the general Liapunov function +°(x, t), defined
in the work [5 ], corresponds to the action S of a mechanical system in
the theory of the Hamilton-Jacobi equation. Rozonoer [ 9 ] has considered
the analogy between the variational principles of mechanics and the solu-
tion of optimal problems from a somewhat different aspect to ours.

4. In this section we describe the direct method of solution of the
problem A‘.

We choose for our function U[x, t] the function
Ue=1—exp(—a?/26) if 1£[0, =], U, =0 if t>1,
where r, is a sufficiently large number. In other words, we replace the

integral (1.7) by an integral of the function U, = 1~ exp(-2?/2¢ ) over

the finite interval [0, ’c]- The problem A¢, can be solved by the direct
method.

u(t) =aysin(t/t)+...4 a;sin (it /=.) (4.1)
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The substitution of u(t) into Formulas (2.11) and (1.7) reduces the
problem to the form

Te

min F (ay,...,a;) = min [ S (Ue [z (xy, 2, u), 2] + u?* (1)) dt]
0

if (—oo<la;<Coo,i=1,..,1 (4.2)

If the number ¢ > 0 is sufficiently small, and the numbers k and I

are sufficiently large, then the control u’(t) = a° sin(t/r.) + ... +

a°(lt/r.), where a° is a solution of the problem (4.2), will differ
(1n the mean) by an arbn:rarlly small amount from the optimal control
@ (t), and the trajectory x(xy, t, u”) will be arbitrarily close to
2 (t) at every moment t of the transition process. Indeed, t:he minimum
of the function F(al, «es, @) is obviously not less than T v i+ At the
same time, the function u°(t) (for large enough I) can be approxmated
(in the mean) arbitrarily closely by the polynomial (4.1). Hence, for
small ¢ > 0 and large k and ! the quantity min F(ae,, ..., a;) will differ
from T, ,° by an arbitrarily small amount.

Thus, in accordance with Theorem 2.1, with ¢ +» 0, [ » =, the solution
(4.1) of the problem (4.2) has to converge in the mean to «° (¢t), which
proves our assertion.

The minimum (4.2) can be found by the method of fastest descent. If
the coefficients a; are considered as functions of the parameter @, then,
in order to find the minimizing values a,°, one has to integrate
(numerically) the system of equations

da;;s) — __S ( ggs [S z Fm['qs be sin l.f‘dt} Yhuzk— l(l)SHl“» dt
01

j

= Fi (), Fl="Fi(v) (i=1,...) 14.3)

with 6 > 0, and with the initial conditions a ;, = ¢;(0) which lie on the
sphere of attraction of the singular point a; = a/° of the system (4.3).
The process of fastest descent along the craJectory (4.3) can be
accomplished on an optimizer, a system of extremal control [ 10 ]. Hereby
the restriction on u(t), which is produced by the term u2k can be re-
placed by another one, which is more convenient in modelling.

Note 4.1. The described method for computing the optimal trajectory
by the method of smoothing out the problem and the application of direct
methods, can be applied also in the case of a nonlinear, nonstationary
control system,
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4.92. It should be mentioned that the described method of solution

makes it possible to determine only the individual optimal control © (t)
for previously-given initial conditions. This method is not very effect-
ive in applications to a problem of synthesis, i.e. to the problem of
determining the optimal control «° in the form of a function u° (x) of
phase coordinates «x.

10.
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